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Asymmetry Hurts: Private Information Retrieval
Under Asymmetric Traffic Constraints

Karim Banawan , Member, IEEE, and Sennur Ulukus , Fellow, IEEE

Abstract— We consider the classical setting of private infor-
mation retrieval (PIR) of a single message (file) out of M
messages from N distributed databases under the new constraint
of asymmetric traffic from databases. In this problem, the ratios
between the traffic from the databases are constrained, i.e., the
ratio of the length of the answer string that the user (retriever)
receives from the nth database to the total length of all answer
strings from all databases is constrained to be τn. This may
happen if the user’s access to the databases is restricted due
to database availability, channel quality to the databases, and
other factors. For this problem, for fixed M, N, we develop a
general upper bound C̄(τ ), which generalizes the converse proof
of Sun-Jafar, where database symmetry was inherently used. Our
converse bound is a piece-wise affine function in the traffic ratio
vector τ = (τ1, · · · , τN ). For the lower bound, we explicitly show
the achievability of

(M+N−1
M

)
corner points. For the remaining

traffic ratio vectors, we perform time-sharing between these
corner points. The recursive structure of our achievability scheme
is captured via a system of difference equations. The upper and
lower bounds exactly match for M = 2 and M = 3 for any N
and any τ . The results show strict loss of PIR capacity due to
the asymmetric traffic constraints compared with the symmetric
case of Sun-Jafar which implicitly uses τn = 1

N for all n.

Index Terms— Private information retrieval, asymmetric traffic
constraints, database access constraints, capacity.

I. INTRODUCTION

PROTECTING the privacy of downloaded information
from curious publicly accessible databases has been the

focus of considerable research within the computer science
community [1]–[5]. The problem of privacy has become even
more relevant today in the presence of efficient data-mining
techniques. Private information retrieval (PIR), introduced by
Chor et al. in [1], studies the privacy of the downloaded
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content from public databases. In the classical PIR setting, a
user requests to download a certain message (or file) out of M
distinct messages from N non-communicating (non-colluding)
databases without leaking the identity of the desired message
to any individual database. The contents of these databases are
identical. The user prepares N queries, one for each database,
such that the queries do not reveal the user’s interest in the
desired message. Upon receiving these queries, each database
responds truthfully with an answer string. The user needs to
be able to reconstruct the entire message by decoding the
answer strings from all databases. PIR schemes are designed
to be more efficient than the trivial scheme of downloading all
the files stored in the databases. The efficiency of a retrieval
scheme is measured by the retrieval rate, which is the ratio
of the number of decodable desired message symbols to the
number of total downloaded symbols.

Recently, the PIR problem is revisited by information
theorists [6]–[11]. The information-theoretic reformulation of
the problem assumes that the messages are of arbitrarily
large size and hence the upload cost can be neglected with
respect to the download cost [8] in contrast to the computer
science formulation. This formulation provides an absolute
guarantee (as opposed to computational PIR, e.g., [3], [5]).
In the leading work [12], Sun and Jafar introduce the PIR
capacity notion to characterize the fundamental limits of the
PIR problem. The PIR capacity is defined as the supre-
mum of PIR rates over all achievable retrieval schemes. [12]
determines the exact capacity of the classical PIR to be
C = (1 + 1

N + 1
N2 + · · · + 1

N M−1 )−1. Following the work of
[12], the fundamental limits of many interesting variants of the
classical PIR problem have been considered, such as: PIR from
colluding databases, robust PIR, symmetric PIR, PIR from
MDS-coded databases, PIR for arbitrary message lengths,
multi-round PIR, multi-message PIR, PIR from Byzantine
databases, secure symmetric PIR with adversaries, cache-aided
PIR, PIR with private side information (PSI), PIR for func-
tions, storage constrained PIR, and their several combinations
[13]–[36].

A common property of the achievability schemes
constructed for these PIR problems is that they exhibit
a symmetric structure across the databases. In most existing
PIR schemes, the user retrieves pieces of the desired message
from all databases, and generates and uses side information
at all databases in a symmetric manner. This enables the
user to balance the load of retrieval of the desired message
equally among the databases, and re-use the side information
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generated from one database equally in all the remaining
databases. Now, consider the following scenarios that
render symmetry assumption unworkable: Varying database
availability: Certain databases are available only a fraction of
the time other databases are available for downloads. Different
capacities: The capacities of the links (bit pipes) from the
databases to the user have different capacities. This may be
due to different physical locations of the databases, e.g., the
user may be able to access physically closer databases more
often than physically distant databases, or it may be due to
the quality of the physical layer communication channel,
e.g., the bandwidths (rates) of the download channels may
be different for different databases. In these cases, the user
is forced to deal with each database differently, i.e., the
user should utilize the databases which have better quality
links more often than the other databases. This breaks the
database symmetry assumption, makes load balancing of
desired message and side information more challenging, and
poses the following interesting questions: Can we perform
efficient PIR without applying database symmetry? Is there
a fundamental PIR rate loss due to not being able to use
symmetric schemes?

Motivated by these practical scenarios, we consider the PIR
problem under asymmetric traffic constraints. Formally, we
consider a classical PIR setting with N replicated and non-
communicating databases storing M messages. We assume
that the nth database responds with a tn-length answer string.
We constrain the lengths of the answer strings such that
tn = λnt1 for n ∈ {2, · · · , N}. This, in turn, forces the ratios
between the traffic from the databases to be 1 : λ2 : λ3 :
· · · : λN . We denote the traffic ratio with respect to the total
download by a vector τ = (τ1, · · · , τN ), where τn = λn�N

j=1 λ j
.

We aim at characterizing the capacity of this PIR problem,
C(τ ), as a function of the given traffic ratio vector τ for
arbitrary M and N . We note that in this problem, we do not
constrain t1 itself, but rather constrain the ratios between the
responses according to τ ; in fact, we assume that t1 can grow
arbitrarily large to conform with the classical information-
theoretic formulation. Furthermore, we remark that although
our problem seems to be related to the upload-constrained PIR
problem [12], we note that the upload-constrained problem
investigates the minimum possible query size if the user and
the databases exchange a codebook prior to the retrieval
process, while in the asymmetric traffic constrained problem
here we do not assume the existence of a codebook, and hence
we minimize the number of queries subject to an additional
constraint on the traffic ratios.

In this paper, we investigate the fundamental limits of the
PIR problem under asymmetric traffic constraints. To that
end, we develop a novel upper bound for the capacity C̄(τ ).
This generalizes the converse proof of [12] to incorporate the
asymmetric traffic constraints. Originally, the proof in [12]
exploits the database symmetry. The rationale is that even if
the optimal scheme is not symmetric, we can transform it into
a symmetric scheme without changing the retrieval rate by
means of time-sharing [12]. In our case, we cannot use this
technique as we must deal with the databases differently. We

characterize the upper bound as a piece-wise affine function in
τ (see Theorem 1). The upper bound implies that asymmetry
fundamentally hurts the retrieval rate (see Corollary 1 and
Remark 4). Then, we propose explicit achievability schemes
for

�M+N−1
M

�
corner points. Each corner point corresponds to a

specific partitioning of the databases according to the number
of side information symbols that are used simultaneously
within the initial round of the download. We describe the
achievability scheme via a system of difference equations in
the number of stages at each round of the download (which
is parallel to [22]). For any other traffic ratio vector τ , we
employ time-sharing between the corner points that enclose τ .
We provide an explicit rate expression for the case of N = 2
for arbitrary M . We show that the upper bound and the lower
bound exactly match for the cases of M = 2 and M = 3
messages for any N and any τ , leading to the exact capacity
C(τ ) for these cases.

II. SYSTEM MODEL

Consider a classical PIR model with N non-communicating
and replicated databases storing M messages (or
files). Each database stores the same set of messages
W1:M = {W1, · · · , WM }. Messages W1:M are independent and
identically distributed over all vectors of size L picked from
a finite field F

L
q , i.e.,

H (Wi) = L, i ∈ {1, · · · , M} (1)

H (W1, · · · , WM ) = M L, (q-ary units) (2)

In the PIR problem, a user wants to retrieve a message
Wi ∈ W1:M correctly without revealing any information about
the identity of the message i to any individual database. To
that end, the user submits a query Q[i]

n to the nth database. The
messages and the queries are statistically independent due to
the fact that the user does not know the message realizations
in advance, i.e.,

I (W1:M ; Q[i]
1:N ) = 0 (3)

where Q[i]
1:N = {Q[i]

1 , · · · , Q[i]
N }. The nth database responds

truthfully by an answer string A[i]
n . The answer string A[i]

n is a
deterministic function of the query Q[i]

n and all the messages
W1:M , hence

H (A[i]
n |Q[i]

n , W1:M ) = 0, n ∈ {1, · · · , N} (4)

In the PIR model with asymmetric traffic constraints, the
lengths of the answer strings are different (see Fig. 1). More
specifically, we assume that the nth database responds with a
tn-length answer string, such that tn = λnt1, where λn is the
ratio between the traffic from the nth database to the traffic
from the first database. Without loss of generality, we assume
that the first database has the highest traffic and the remaining
databases are ordered descendingly in λn . Hence, {λn}N

n=1 is
a non-increasing monotone sequence with λ1 = 1, and λn ∈
[0, 1], i.e.,

H (A[i]
n ) ≤ λnt1, i ∈ {1, · · · , M}, n ∈ {1, · · · , N} (5)

where 1 ≥ λ2 ≥ · · · ≥ λN .
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Fig. 1. PIR under asymmetric traffic constraints.

We define the traffic ratio of the nth database τn as the ratio
between the traffic from the nth database and the total traffic
from all databases, i.e.,

τn = λn�N
j=1 λ j

(6)

We note that there is a one-to-one transformation
between the vector λ = (λ1, λ2, · · · , λN ) and the vector
τ = (τ1, τ2, · · · , τN ). Thus, λ and τ are used interchangeably
within the context of this paper.

In order to ensure the privacy, at the nth database, the query
Q[i]

n designed to retrieve Wi should be indistinguishable from
the queries designed to retrieve any other message, i.e.,

(Q[i]
n , A[i]

n , W1:M ) ∼ (Q[ j ]
n , A[ j ]

n , W1:M ), ∀ j ∈ {1, · · · , M}
(7)

where ∼ denotes statistical equivalence.
In addition, the user should be able to reconstruct Wi from

the collected answer strings A[i]
1:N with arbitrarily small prob-

ability of error. By Fano’s inequality, we have the following
reliability constraint,

H (Wi |Q[i]
1:N , A[i]

1:N ) = o(L) (8)

where o(L)
L → 0 as L → ∞.

For a fixed N , M , and a traffic ratio vector τ , a retrieval rate
R(τ ) is achievable if there exists a PIR scheme which satisfies
the privacy constraint (7) and the reliability constraint (8) for
some message lengths L(τ ) and answer strings of lengths
{tn(τ )}N

n=1 that satisfy the asymmetric traffic constraint (5),
such that

R(τ ) = L(τ )�N
n=1 tn(τ )

(9)

We note that in this problem, we do not constrain either
the message length L(τ ) or the lengths of the answer strings
tn(τ ), but we rather constrain the ratios of the traffic of each

database with respect to the traffic of the first database. The
pair (L(τ ), t1(τ )) can grow arbitrarily large to conform with
the information-theoretic framework.

The capacity of the PIR problem under asymmetric traffic
constraints C(τ ) is defined as the supremum of all achievable
retrieval rates, i.e., C(τ ) = sup R(τ ).

III. MAIN RESULTS AND DISCUSSIONS

Our first result is an upper bound on C(τ ) as a function of
τ for any fixed M , N .

Theorem 1 (Upper bound) For the PIR problem under
monotone non-increasing asymmetric traffic constraints
τ = (τ1, · · · , τN ), the PIR capacity C(τ ) is upper bounded by

C(τ ) ≤ C̄(τ )

= min
ni ∈{1,··· ,N}

1 + γ (n1)
n1

+ γ (n2)
n1n2

+ · · · + γ (nM−1)�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(10)

where γ (�) =
�N

n=�+1 λn�N
n=1 λn

= �N
n=�+1 τn corresponds to the sum

of the traffic ratios from databases [� + 1 : N].

The proof of this upper bound is given in Section IV. We
have the following remarks.

Remark 1 The minimization in (10) is performed to obtain
the tightest bound, i.e., the bound in (10) is valid for any
sequence of {ni }N

i=1 ⊂ {1, · · · , N}M−1. In particular, restrict-
ing the minimization in the bound in (10) to monotone non-
decreasing sequences {ni }M−1

i=1 ⊂ {1, · · · , N}M−1 such that
n1 ≤ n2 ≤ · · · ≤ nM−1 is still a valid upper bound, as
it cannot decrease the upper bound C̄(τ ) (the feasible set
shrinks, hence the optimal value C̄(τ ) would be potentially
higher). For fixed M, N, the number of such monotone bounds
is

�M+N−2
M−1

�
.
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Remark 2 The upper bound for the capacity function C̄(τ ) in
(10) is a piece-wise affine function in the traffic ratio vector τ .

Remark 3 The upper bound in (10) generalizes the known
results about the PIR problem. By picking n1 = · · · = nM−1 =
N, (10) leads to

C(τ ) ≤ 1

1 + 1
N + 1

N2 + · · · + 1
N M−1

(11)

which is the capacity of PIR with symmetric traffic (no
traffic constraints) in [12]. On the other hand, if τ =
(1, 0, 0, · · · , 0), which implies that no traffic is returned from
any database except for the first one, by picking n1 = · · · =
nM−1 = 1, the upper bound in (10) leads to 1

M , which is the
capacity of the PIR problem with one database [1].

The following corollary is a direct consequence of
Theorem 1. The corollary asserts that there is a strict capacity
loss due to the asymmetric traffic constraints if the traffic ratio
of the weakest link falls below a certain threshold.

Corollary 1 (Asymmetry hurts) For the PIR problem under
monotone non-increasing asymmetric traffic constraints
τ = (τ1, · · · , τN ), if τN < τ ∗, such that

τ ∗ = N M−1 − 1

N M − 1
, N > 1 (12)

then C(τ ) < C, where C = 1
1+ 1

N +···+ 1
N M−1

is the PIR capacity

without the asymmetric traffic constraints in1 [12].

Proof: From Theorem 1, the upper bound corresponding to
n1 = N − 1, and n2 = · · · = nM−1 = N is strictly tighter
than the capacity without asymmetric traffic constraints C if

1 + τN
N−1

1 + 1
N−1 + 1

(N−1)N + · · · + 1
(N−1)N M−2

< C (13)

which leads to
τN

N − 1

�
1 + 1

N
+ · · · + 1

N M−1

�

<

�
1

N − 1
− 1

N

� �
1 + 1

N
+ · · · + 1

N M−2

�
(14)

which further simplifies to

τN <

1
N

�
1 + 1

N + · · · + 1
N M−2

	
�

1 + 1
N + · · · + 1

N M−1

	
=

1
N

�M−2
i=0 Ni�M−1

i=0 Ni
= τ ∗ (15)

1We note that Corollary 1 can be generalized to cases other than the
constraint on the traffic of the lowest link. In fact, there exist

�M+N−2
M−1

�
inequalities regarding the conditions such that the traffic ratio vector results
in hurting the retrieval rate. These conditions result from plugging different
monotone non-decreasing sequences in (10). That is why, we present the
condition in Corollary 1, as an instance of a condition for which we incur
a capacity loss, but this indeed is without loss of generality. As a concrete
example, let n1 = N −2, and ni = N for all ni �= 1. Plugging these numbers
in (10) yields the condition τN−1 + τN < 2τ∗ by following the same steps
as in Corollary 1.

which implies that the upper bound for the capacity under the
asymmetric traffic constraint is strictly less than C , which in
turn implies that any achievable rate is strictly less than the
unconstrained capacity. �

Remark 4 As the number of messages M becomes large
enough, i.e., as M → ∞, the traffic ratio threshold in (12)
τ ∗ → 1

N . This implies that as M → ∞, any asymmetric traffic
constraint incurs strict capacity loss.

Our second result is a lower bound on C(τ ) as a function
of τ for any fixed M , N .

Theorem 2 (Lower bound) For the PIR problem under
asymmetric traffic constraints, for a monotone non-decreasing
sequence n = {ni }M−1

i=0 ⊂ {1, · · · , N}M , let n−1 = 0, and
S = {i ≥ 0 : ni − ni−1 > 0}. Denote y�[k] as the number of
stages of the achievable scheme that downloads k-sums from
the nth database, such that n�−1 ≤ n ≤ n�, and � ∈ S.
Let ξ� = �

s∈S\{�}
�M−2

s−1

�
. The number of stages y�[k] is

characterized by the following system of difference equations:

y0[k] = (n0−1)y0[k−1] +



j∈S\{0}
(n j −n j−1)y j [k−1]

y1[k] = (n1−n0−1)y1[k−1] +



j∈S\{1}
(n j −n j−1)y j [k−1]

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]
+



j∈S\{�}

(n j −n j−1)y j [k−1], � ≥ 2 (16)

where δ[·] denotes the Kronecker delta function. The ini-
tial conditions of (16) are y0[1] = �

s∈S
�M−2

s−1

�
, and

y j [k] = 0 for k ≤ j . Consequently, the traffic ratio vector
τ (n) = (τ1(n), · · · , τN (n)) corresponding to the sequence
n = {ni }M−1

i=0 is given by:

τn(n) =
�M

k=1

�M
k

�
y j [k]�

�∈S
�M

k=1

�M
k

�
y�[k](n� − n�−1)

(17)

for n j−1 +1 ≤ n ≤ n j , and the achievable rate corresponding
to τ (n) is given by:

R(τ (n)) =
�

�∈S
�M

k=1

�M−1
k−1

�
y�[k](n� − n�−1)�

�∈S
�M

k=1

�M
k

�
y�[k](n� − n�−1)

(18)

Moreover, for τ = �N
i=1 αiτ (ni ) for αi ≥ 0, for all i , and�N

i=1 αi = 1, the following is a lower bound on C(τ ),

C(τ ) ≥ R(τ ) =
N


i=1

αi R(τ (ni )) (19)

The proof of Theorem 2 can be found in Section V.
The theorem characterizes an achievable rate for the corner
points τ (n) corresponding to any monotone non-decreasing
sequence n = {ni }M−1

i=0 ⊂ {1, · · · , N}M . For any other
traffic ratio vector τ , the achievability scheme is obtained
by time-sharing between the nearest corner points. We note
that due to the large number of corner points, we do not
provide an explicit achievable rate for each corner point but we
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rather describe the achievable rate by a system of difference
equations. The solution of this system of difference equations
specifies the traffic ratio vector τ (n) and the achievable
rate R(τ (n)) corresponding to the monotone non-decreasing
sequence {ni }M−1

i=0 . We have the following remarks.

Remark 5 If ni = N for all i ∈ {0, · · · , M − 1}, then
S = {0} and the number of stages of k-sums is described by
the following difference equation for any database

y[k] = (N − 1)y[k − 1] (20)

with initial condition of y[1] = 1. In this case τn = 1
N for all

n, and R = 1
1+ 1

N +···+ 1
N M−1

, i.e., the scheme in Theorem 2

reduces to the symmetric scheme in [12] if the sequence
n = (N, N, · · · , N) is used.

Remark 6 We note that the sequence {ni }M−1
i=0 suffices to

completely specify the traffic ratio vector τ (n) for every corner
point as a consequence of the monotonicity of the sequence,
i.e.,

{ni }M−1
i=0 ⇒ (τ̃0, · · · , τ̃0� �
 �

n0 elements

, τ̃1, · · · , τ̃1� �
 �
(n1−n0) elements

, · · · ,

τ̃M−1, · · · , τ̃M−1� �
 �
(nM−1−nM−2) elements

) (21)

where τ̃ j =
�M

k=1 (M
k )y j [k]�

�∈S
�M

k=1 (M
k )y j [k](n�−n�−1)

.

Remark 7 For fixed M, N, the number of corner points
in Theorem 2 corresponds to the number of monotone non-
decreasing sequences n = {ni }M−1

i=0 , which is2
�M+N−1

M

�
.

The next corollary asserts that the achievable scheme in
Theorem 2 is optimal for M = 2 and M = 3 messages for
any traffic ratio vector τ and any number of databases N .

Corollary 2 (Capacity for M = 2 and M = 3 messages)
For the PIR problem with asymmetric traffic constraints τ ,
the capacity C(τ ) for M = 2 and M = 3, and for any
arbitrary N is given by:

C(τ )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
n0∈{1,··· ,N}

1 +
�N

n=n0+1 τn

n0

1 + 1
n0

, M = 2

min
n0≤n1∈{1,··· ,N}

1 +
�N

n=n0+1 τn

n0
+

�N
n=n1+1 τn

n0n1

1 + 1
n0

+ 1
n0n1

, M = 3

(22)

The proof of Corollary 2 is given in Section VI.
Fig. 2 shows the PIR capacity under asymmetric constraints

C(λ2) as a function of λ2 (which is bijective to τ ) for the
case of M = 3 messages and N = 2 databases. We note

2We note that the number of corner points in the lower and upper bounds
are the same as the upper bound corresponds to

�M+N−2
M−1

�
regions (surfaces)

in N -dim space. This induces
�M+N−1

M
�

corner points at the intersections of
the regions (see Fig. 3, Fig. 4, and Fig. 5).

Fig. 2. Capacity function C(λ2) for M = 3, N = 2.

Fig. 3. Illustration of corner points and regions of C(λ2, λ3) for M = 3,
N = 3.

that the capacity C(λ2) is a piece-wise monotone curve in
λ2, which consists of

�M+N−2
M−1

� = 3 regimes. There exist�M+N−1
M

� = 4 corner points. Specific achievable schemes for
the case of M = 3 and N = 2 are given in Section V-A.
Each corner point shown in Fig. 2 corresponds to an explicit
achievable scheme given in Section V-A.1. For any other point,
time-sharing between corner points is used to achieve these
points as shown in Section V-A.2.

Fig. 3 shows the capacity region C(λ2, λ3) for the case
of M = 3 messages and N = 3 databases as a func-
tion of the pair (λ2, λ3) (which is bijective to τ ). Fig. 3
shows that there exist

�M+N−1
M

� = 10 corner points, and�M+N−2
M−1

� = 6 regions. We show the capacity regions in terms
of the triple (λ2, λ3, C(λ2, λ3)). Furthermore, for every region
we show the corresponding (n0, n1) to be plugged in (22). The
capacity for any point (λ2, λ3) other than the corner points
is obtained by time-sharing between the corner points that
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Fig. 4. Achievable rate-traffic ratio tradeoff for N = 2.

enclose (λ2, λ3). Specific achievable schemes for M = 3,
N = 3 are given in Section VIII-B.

Finally, in the following corollary, we specialize the achiev-
able scheme in Theorem 2 to the case of N = 2 for any
arbitrary M .

Corollary 3 (Achievable traffic versus retrieval rate trade-
off for N = 2 databases) For the PIR problem with N = 2
and an arbitrary M under asymmetric traffic constraints
τ = (1 − τ2, τ2), τ2 ≤ 1

2 , let s2 ∈ {1, · · · , M − 1}, for the
traffic ratio τ2(s2), where

τ2(s2) =
��

M−s2−1
2

�
i=0

� M
s2+2i+1

�
M

�M−2
s2−1

� + �M−s2−1
i=0

� M
s2+1+i

� (23)

the PIR capacity C(τ2(s2)) is lower bounded by:

C(τ2(s2)) ≥ R(τ2(s2))

=
�M−2

s2−1

� + �M−s2−1
i=0

�M−1
s2+i

�
M

�M−2
s2−1

� + �M−s2−1
i=0

� M
s2+1+i

� (24)

Moreover, if τ2(s2) < τ2 < τ2(s2 + 1), and α ∈ (0, 1), such
that τ2 = ατ2(s2) + (1 − α)τ2(s2 + 1), then

C(τ2) ≥ R(τ2) = αR(τ2(s2)) + (1 − α)R(τ2(s2 + 1)) (25)

The proof of Corollary 3 is given in Section VII.

Remark 8 Fig. 4 shows the tradeoff between the traffic ratio
τ2 and the achievable retrieval rate R(τ2). We note that as
M increases R(τ2) decreases pointwise. We observe that as
M → ∞, the rate-traffic tradeoff converges to R(τ2) = τ2.
This implies that for large enough M, our achievable scheme
reduces to time-sharing between the trivial achievable scheme
of downloading all the messages from database 1 which
achieves a rate of 1

M , and the asymptotically-optimal achiev-
able scheme in [6] which achieves R = 1 − 1

N .

Fig. 5. Lower and upper bounds for N = 2.

Remark 9 Fig. 5 shows the lower and upper bounds for
N = 2 and M = 4, 5, 6, 10, 100. It is clear that the bounds do
not match. However, we note that the largest gap monotoni-
cally decreases as M increases until both bounds match at the
limit M → ∞, where R(τ2) = τ2. The maximum possible gap
for N = 2 is 0.008, which appears at M = 4. Furthermore,
we can analytically prove that the upper bound C̄(τ ) → τ2
by choosing ni = 1 for all i , hence the upper bound becomes,

C̄(τ ) = 1 + (M − 1)τ2

M
→ τ2 (26)

as M → ∞. This settles the asymptotic PIR capacity to be
C(τ2) = τ2 for N = 2 and M → ∞.

IV. CONVERSE PROOF

In this section, we derive an upper bound for the PIR
problem with asymmetric traffic constraints. We extend the
converse techniques introduced in [12] to account for the
asymmetry of the returned answer strings.

We first need the following lemma, which characterizes a
fundamental lower bound on the interference from the unde-
sired messages within the answer strings, i.e., a lower bound
on

�N
n=1 tn − L, as a consequence of the privacy constraint.

The proof of this lemma can be found in [12, Lemma 5]. The
proof follows for our case since the privacy constraint does
not change in the PIR with asymmetric traffic constraints,
and the fact that the proof in [12, Lemma 5] deals with
the length of the entire downloaded answer strings A[1]

1:N
and not the individual lengths of each answer string, see
[12, equations (46)-(47)].

Lemma 1 (Interference lower bound) For the PIR problem
under asymmetric traffic constraints {tn}N

n=1, the interfer-
ence from undesired messages within the answer strings�N

n=1 tn − L is lower bounded as,

N

n=1

tn − L + o(L) ≥ I
�

W2:M ; Q[1]
1:N , A[1]

1:N |W1

	
(27)
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In the following lemma, we prove an inductive relation for
the mutual information term on the right hand side of (27). In
this lemma, the interference lower bound in (27) is expanded
into two parts. The first part, which contains the answer strings
from the first nm−1 databases A[m]

1:nm−1
, is dealt with as in the

proof of [12, Lemma 6]. For the second part, which contains
the remaining answer strings A[m]

nm−1+1:N , each answer string

A[m]
n is bounded trivially by the length of the answer string tn .

Lemma 2 (Induction lemma) For all m ∈ {2, . . . , M} and
for an arbitrary nm−1 ∈ {1, · · · , N}, the mutual information
term in Lemma 1 can be inductively lower bounded as,

I
�

Wm:M ; Q[m−1]
1:N , A[m−1]

1:N |W1:m−1

	
≥ 1

nm−1
I
�

Wm+1:M ; Q[m]
1:N , A[m]

1:N |W1:m
	

+ 1

nm−1

⎛
⎝L − t1

N

n=nm−1+1

λn

⎞
⎠ − o(L)

nm−1

(28)

We note that [12, Lemma 6] can be interpreted as a special
case of Lemma 2 with setting nm−1 = N . Intuitively, nm−1
represents the number of databases that can apply the optimal
symmetric scheme in [12] if the user wants to retrieve message
Wm−1 from the set of Wm−1:M messages (i.e., conditioned on
W1:m−1).

Proof: We start with the left hand side of (28) after multiply-
ing by nm−1,

nm−1 I
�

Wm:M ; Q[m−1]
1:N , A[m−1]

1:N |W1:m−1

	
≥ nm−1 I

�
Wm:M ; Q[m−1]

1:nm−1
, A[m−1]

1:nm−1
|W1:m−1

	
(29)

≥
nm−1

n=1

I
�

Wm:M ; Q[m−1]
n , A[m−1]

n |W1:m−1

	
(30)

(7)=
nm−1

n=1

I
�

Wm:M ; Q[m]
n , A[m]

n |W1:m−1

	
(31)

(3)=
nm−1

n=1

I
�

Wm:M ; A[m]
n |Q[m]

n , W1:m−1

	
(32)

(4)=
nm−1

n=1

H
�

A[m]
n |Q[m]

n , W1:m−1

	
(33)

≥
nm−1

n=1

H
�

A[m]
n |A[m]

1:n−1, Q[m]
1:nm−1

, W1:m−1

	
(34)

(4)=
nm−1

n=1

I
�

Wm:M ; A[m]
n |A[m]

1:n−1, Q[m]
1:nm−1

, W1:m−1

	
(35)

= I
�

Wm:M ; A[m]
1:nm−1

|Q[m]
1:nm−1

, W1:m−1

	
(36)

(3)= I
�

Wm:M ; Q[m]
1:nm−1

, A[m]
1:nm−1

|W1:m−1

	
(37)

(3),(4)= I
�

Wm:M ; Q[m]
1:N , A[m]

1:N |W1:m−1

	
− I

�
Wm:M ; A[m]

nm−1+1:N |Q[m]
1:N , A[m]

1:nm−1
, W1:m−1

	
(38)

(4)= I
�

Wm:M ; Q[m]
1:N , A[m]

1:N |W1:m−1

	
− H

�
A[m]

nm−1+1:N |Q[m]
1:N , A[m]

1:nm−1
, W1:m−1

	
(39)

(5)≥ I
�

Wm:M ; Q[m]
1:N , A[m]

1:N |W1:m−1

	
− t1

N

n=nm−1+1

λn (40)

(8)= I
�

Wm:M ; Wm , Q[m]
1:N , A[m]

1:N |W1:m−1

	

− t1

N

n=nm−1+1

λn − o(L) (41)

= I (Wm:M ; Wm |W1:m−1)+ I
�
Wm:M ; Q[m]

1:N , A[m]
1:N |W1:m

	

− t1

N

n=nm−1+1

λn − o(L) (42)

= I
�

Wm+1:M ; Q[m]
1:N , A[m]

1:N |W1:m
	

+
⎛
⎝L − t1

N

n=nm−1+1

λn

⎞
⎠ − o(L) (43)

where (29), (30) follow from the non-negativity of mutual
information, (31) follows from the privacy constraint, (32)
follows from the independence of

�
Wm:M , Q[m]

n

	
, (33), (35)

follow from the fact that the answer string A[m]
n is a determinis-

tic function of
�

Q[m]
n , W1:M

	
, (34) follows from conditioning

reduces entropy, (37) follows from the independence of�
Wm:M , Q[m]

1:nm−1

	
, (38) follows from the chain rule, the inde-

pendence of the queries and the messages, and the fact that
Q[m]

1:N → Q[m]
1:nm−1

→ A[m]
1:nm−1

forms a Markov chain by (4),

(39) follows from the fact that the answer strings A[m]
1:nm−1

are

fully determined from
�

Q[m]
1:N , W1:M

	
, (40) follows from the

fact that conditioning reduces entropy and H (Anm−1+1:N ) ≤�N
n=nm−1+1 tn which is equal to t1

�N
n=nm−1+1 λn from the

asymmetric traffic constraints, (41) follows from the reliability
constraint. Finally, dividing both sides by nm−1 leads to (28).
�

Now, we are ready to derive an explicit upper bound
for the retrieval rate under asymmetric traffic constraints.
Applying Lemma 1 and Lemma 2 successively for an arbi-
trary sequence {ni }M−1

i=1 ⊂ {1, · · · , N}M−1 and observing

that
�N

n=1 tn = t1
�N

n=1 λn under the asymmetric traffic con-
straints, we have the following

t1

N

n=1

λn − L + õ(L)

(27)≥ I
�

W2:M ; Q[1]
1:N , A[1]

1:N |W1

	
(44)

(28)≥ 1

n1

⎛
⎝L−t1

N

n=n1+1

λn

⎞
⎠+ 1

n1
I
�

W3:M ; Q[2]
1:N , A[2]

1:N |W1:2
	
(45)
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(28)≥ 1

n1

⎛
⎝L−t1

N

n=n1+1

λn

⎞
⎠ + 1

n1n2

⎛
⎝L−t1

N

n=n2+1

λn

⎞
⎠

+ 1

n2
I
�

W4:M ; Q[3]
1:N , A[3]

1:N |W1:3
	

(46)

(28)≥ . . .

(28)≥ 1

n1

⎛
⎝L−t1

N

n=n1+1

λn

⎞
⎠+ 1

n1n2

⎛
⎝L−t1

N

n=n2+1

λn

⎞
⎠

+ · · ·+ 1�M−1
i=1 ni

⎛
⎝L−t1

N

n=nM−1+1

λn

⎞
⎠ (47)

where õ(L) =
�

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

�
o(L), (44)

follows from Lemma 1, and the remaining bounding steps
follow from successive application of Lemma 2.

Ordering terms, we have,�
1 + 1

n1
+ 1

n1n2
+· · ·+ 1�M−1

i=1 ni

�
L−õ(L)

≤
�

1 + γ (n1)

n1
+· · ·+ γ (nM−1)�M−1

i=1 ni

�
t1

N

n=1

λn (48)

where γ (�) =
�N

n=�+1 λn�N
n=1 λn

= �N
n=�+1 τn corresponds to the sum

of the traffic ratios from databases [� + 1 : N].
We conclude the proof by taking L → ∞. Thus, for an

arbitrary sequence {ni }M−1
i=1 , we have

R(τ ) = L

t1
�N

n=1 λn

≤
1 + γ (n1)

n1
+ γ (n2)

n1n2
+ · · · + γ (nM−1)�M−1

i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(49)

Finally, we get the tightest bound by minimizing over the
sequence {ni }M−1

i=1 over the set {1, · · · , N}, as

R(τ ) ≤ min
ni ∈{1,··· ,N}

1 + γ (n1)
n1

+ γ (n2)
n1n2

+ · · · + γ (nM−1)�M−1
i=1 ni

1 + 1
n1

+ 1
n1n2

+ · · · + 1�M−1
i=1 ni

(50)

= min
ni ∈{1,··· ,N}

1 +
�N

n=n1+1 τn

n1
+ · · · +

�N
n=nM−1+1 τn�M−1

i=1 ni

1 + 1
n1

+ · · · + 1�M−1
i=1 ni

(51)

Remark 10 From the converse proof, we note that we can
intuitively interpret ni as the number of databases that can
apply the symmetric traffic scheme in [12] if the number of
messages is reduced to be M − i + 1. We point out that in
the absence of asymmetric traffic constraints as in [12], all
databases can apply symmetric schemes, therefore ni = N for
all i ∈ {1, · · · , M − 1}. Now, in Lemma 2, we lower bound
the term I

�
Wm:M ; Q[m−1]

1:N , A[m−1]
1:N |W1:m−1

	
which refers to a

reduced PIR problem with M − m + 1 messages. The privacy
constraint

(Q[i]
n , A[i]

n , W1:M ) ∼ (Q[ j ]
n , A[ j ]

n , W1:M ), ∀ j ∈ {1, · · · , M}
(52)

is less constrained when the number of messages decreases
from M to M − m + 1 (as we have less pair-wise statistical
equivalence). Hence, if nm databases can adopt symmetric
scheme when the number of messages is M − m + 1, then
nm+1 ≥ nm databases can also adopt the same symmetric
scheme as the number of messages is reduced to M − m
messages, which leads to more flexibility in terms of satis-
fying the traffic constraints. Therefore, it suffices to evaluate
the bound in (10) for monotone non-decreasing sequences
{ni }M−1

i=1 ⊂ {1, · · · , N}M−1 such that n1 ≤ n2 ≤ · · · ≤ nM−1.
Note that from our achievable scheme point of view, the
monotone sequences have an operational meaning, in which
the number of databases in group � is equal to n� −n�−1 ≥ 0.
Furthermore, for the cases of M = 2, 3, the lower and upper
bounds match, which implies that there is no loss of generality
in focusing on monotone non-decreasing sequences.

V. ACHIEVABILITY PROOF

The achievability scheme for the PIR problem under asym-
metric traffic constraints is inspired by the PIR schemes in
[12], [30]. Our achievable scheme applies message symmetry,
and side information exploitation as in [12], [30]. However,
due to the asymmetric traffic constraints, database symmetry
cannot be applied. In an alternative view, we use the side
information in an asymmetric fashion among the databases.
The most relevant achievable scheme to our achievable scheme
here is the scheme in [30], in which the bits stored in the user’s
cache is exploited differently depending on the caching ratio.
We begin the discussion by presenting the M = 3, N = 2
case as a concrete example to illustrate the main concepts of
the scheme.

A. Motivating Example: M = 3 Messages, N = 2 Databases

In this section, we show the achievability scheme for
M = 3, N = 2. We first carry out the minimization in (10)
over n1, n2 ∈ {1, 2}. In this case, we have 4 upper bounds
(or effectively 3 bounds if n1 ≤ n2 restriction is applied). By
taking the minimum of these bounds for every λ2 ∈ [0, 1], we
have the following explicit upper bound on the capacity as a
function of λ2 (which is in bijection to τ2)

C(λ2) ≤

⎧⎪⎨
⎪⎩

1+3λ2
3(1+λ2)

, 0 ≤ λ2 ≤ 1
3

2(1+2λ2)
5(1+λ2)

, 1
3 ≤ λ2 ≤ 3

4
4
7 , 3

4 ≤ λ2 ≤ 1

(53)

To show the achievability of the upper bound in (53), let ai ,
bi , ci denote randomly and independently permuted symbols
of messages W1, W2, W3, respectively. Define s2 ∈ {0, 1, 2}
to be the number of side information symbols that are used
simultaneously in database 2 within the initial round of
downloads. First, we show the achievability of the corner
points, i.e., the achievability of the points corresponding to
λ2 ∈ {0, 1

3 , 3
4 , 1}.

1) Achievability of the Corner Points:
a) The λ2 = 0 Corner Point: λ2 = 0 means that

the second database does not return any answer strings.
The optimal achievable scheme is to download all files
from the first database (see Table I). This scheme achieves
R = 1

3 = C(0).



7636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 11, NOVEMBER 2019

TABLE I

THE QUERY TABLE FOR M = 3, N = 2, λ2 = 0

TABLE II

THE QUERY TABLE FOR M = 3, N = 2, λ2 = 1

b) The λ2 = 1 Corner Point: Since λ1 = 1 by definition,
λ2 = 1 means that a symmetric scheme can be applied to
both databases. Thus, the optimal achievable scheme is the
optimal symmetric scheme in [12] (see Table II). We present
the scheme here for completeness. In this scheme, the user
starts with downloading the individual symbols a1, b1, c1 from
database 1. Since λ2 = 1, database symmetry can be applied,
hence the user downloads a2, b2, c2 from database 2. Note
that in this case, the user does not exploit the side information
generated from database 1 in the first round of downloads, but
rather downloads new individual symbols, hence s2 = 0 in this
case. The undesired symbols bi , ci , i = 1, 2 can be exploited in
the other database. This can be done by downloading a3 + b2,
a4 + c2 from database 1, and similarly by applying database
symmetry, the user downloads a5 + b1, a6 + c1 from database
2. In order to satisfy the privacy constraint, the user applies the
message symmetry and downloads b3+c3 from database 1, and
b4 + c4 from database 2. Finally, the user exploits the newly
generated side information by downloading a7 + b4 + c4 from
database 1, and a8 + b3 + c3 from database 2. Consequently,
the user downloads L = 8 symbols in 14 downloads which
results in R = 8

14 = 4
7 = C(1).

c) The λ2 = 3
4 Corner Point: The user can cut the

first round of downloads in database 2 and exploit the side
information generated from database 1 directly in the form of
sums of 2, i.e., the user downloads a1, b1, c1 from database 1
and then exploits the undesired symbols as side information
by downloading a2 + b1, a3 + c1 from database 2. The user
then applies message symmetry and downloads b2 + c2. Since
the user uses 1 bit of side information in the initial download
round from database 2, s2 = 1 in this case. Finally, the user
exploits the undesired sum b2 + c2 from database 2 as a side
information in database 1 and downloads a4 + b2 + c2. Using
this scheme the user downloads 4 symbols from database 1
and 3 symbols from database 2, hence λ2 = 3

4 . The user
downloads L = 4 desired symbols out of 7 downloads, thus
R = 4

7 = C( 3
4 ). The privacy is satisfied since W1, W2, W3 are

independently and randomly permuted, and since the scheme
includes all the possible combinations of the sums in any
round. The query table for this scheme is given in Table III.

TABLE III

THE QUERY TABLE FOR M = 3, N = 2, λ2 = 3
4

TABLE IV

THE QUERY TABLE FOR M = 3, N = 2, λ2 = 1
3

We note that this scheme is exactly the asymmetric achievable
scheme presented in [16].

d) The λ2 = 1
3 Corner Point: In this case, the user

downloads a1, b1, c1 from database 1. In database 2, the
user exploits the side information b1, c1 simultaneously and
downloads a2+b1 +c1. Due to the fact that 2 side information
symbols are used simultaneously in the initial round of down-
load from database 2, s2 = 2 in this case. Using this scheme
the user downloads 3 symbols from database 1 and 1 symbol
from database 2, therefore λ2 = 1

3 . The user downloads L = 2
desired symbols in 4 downloads, hence R = 1

2 = C( 1
3 ). The

privacy follows by the same argument as in the previous case.
The query table for this case is given in Table IV.

2) Achievability of Non-Corner Points: In the following,
we show that by combining the achievable schemes of the
corner points over different symbols, the upper bound in (53)
is tight for any λ2. We note that the privacy constraint is still
satisfied after this combination as each scheme operates over
different sets of symbols and the fact that each scheme satisfies
the privacy constraint individually. A formal argument for
proving that combination of private schemes remains private
can be found in [16, Theorem 4]. Let νs2 , where s2 = 0, 1, 2,
denote the number of repetitions of the scheme that uses s2
side information symbols simultaneously in the first round
of download in database 2. By convention, let ν3 denote the
number of repetitions of the trivial retrieval scheme, i.e., when
the retrieval is solely done from database 1.

a) The 0 ≤ λ2 ≤ 1
3 Regime: We combine the achievable

scheme of λ2 = 0 corner point with the achievable scheme
of λ2 = 1

3 corner point. The achievable scheme of λ2 = 0
downloads 3 symbols from database 1 and 0 symbols from
database 2. We perform this scheme ν3 repetitions. The achiev-
able scheme of λ2 = 1

3 downloads 3 symbols from database
1 and 1 symbol from database 2. We perform this scheme
ν2 repetitions. Under the asymmetric traffic constraints, this
results in the following system of equations

3ν3 + 3ν2 = t1 (54)

ν2 = λ2t1 (55)



BANAWAN AND ULUKUS: ASYMMETRY HURTS: PRIVATE INFORMATION RETRIEVAL UNDER ASYMMETRIC TRAFFIC CONSTRAINTS 7637

This system has a unique solution (parametrized by t1) of
ν2 = λ2t1 and ν3 = 1−3λ2

3 t1. Note that ν3 ≥ 0 in the
regime of 0 ≤ λ2 ≤ 1

3 . Since the scheme of λ2 = 0
downloads 1 symbol from the desired message and the scheme
of λ2 = 1

3 downloads 2 symbols from the desired message.
The achievable rate R(λ2) is given by

R(λ2) = 2ν2 + ν3

(1 + λ2)t1
= 1 + 3λ2

3(1 + λ2)
= C(λ2), 0 ≤ λ2 ≤ 1

3
(56)

b) The 1
3 ≤ λ2 ≤ 3

4 Regime: Similarly, the user combines
the achievable schemes of λ2 = 1

3 and λ2 = 3
4 corner points.

The user applies the scheme of λ2 = 1
3 for ν2 repetitions,

which downloads 3 symbols from database 1 and 1 symbol
from database 2 and has L = 2. The user applies the scheme
of λ2 = 3

4 for ν1 repetitions, which downloads 4 symbols from
database 1 and 3 symbols from database 2 and has L = 4. This
results in the following system of equations

4ν1 + 3ν2 = t1 (57)

3ν1 + ν2 = λ2t1 (58)

which has the following solution: ν1 = −1+3λ2
5 t1 ≥ 0 and

ν2 = 3−4λ2
5 t1 ≥ 0 in the regime of 1

3 ≤ λ2 ≤ 3
4 . Consequently,

the achievable rate is given by

R(λ2) = 4ν1 + 2ν2

(1 + λ2)t1
= 2(1 + 2λ2)

5(1 + λ2)
= C(λ2),

1

3
≤ λ2 ≤ 3

4
(59)

c) The 3
4 ≤ λ2 ≤ 1 Regime: The user combines the

achievable schemes of λ2 = 3
4 and λ2 = 1 corner points.

The user repeats the scheme of λ2 = 3
4 for ν1 repetitions, and

the scheme of λ2 = 1 for ν0 repetitions. This results in the
following system of equations

4ν1 + 7ν0 = t1 (60)

3ν1 + 7ν0 = λ2t1 (61)

The solution for this system is given by: ν1 = (1 − λ2)t1 ≥ 0
and ν0 = −3+4λ2

7 t1 ≥ 0 in the regime of 3
4 ≤ λ2 ≤ 1.

The corresponding rate is given by

R(λ2) = 4ν1 + 8ν0

(1 + λ2)t1
= 4

7
= C(λ2),

3

4
≤ λ2 ≤ 1 (62)

d) Specific Example for Non-Corner Points, λ2 = 1
2 : The

query table for this case is given in Table V. The user applies
the scheme of λ2 = 3

4 for ν1 = −1+3λ2
5 t1 = 1

10 t1 repetitions,
and the scheme of λ2 = 1

3 for ν2 = 3−4λ2
5 t1 = 1

5 t1 repetitions.
Choosing t1 = 10, we have ν1 = 1 and ν2 = 2. The scheme
downloads 10 symbols from database 1 and 5 symbols from
database 2, thus, λ2 = 1

2 . The scheme downloads 8 symbols
in 15 downloads, hence R( 1

2 ) = 8
15 = 2(1+2λ2)

5(1+λ2)
= C( 1

2 ).

B. Description of the General Scheme

In this section, we describe the general achievable scheme
that achieves the retrieval rates in Theorem 2. We first show
explicitly the achievability schemes for corner points, i.e.,

TABLE V

THE QUERY TABLE FOR M = 3, N = 2, λ2 = 1
2

the achievability scheme for every monotone non-decreasing
sequence {ni }M−1

i=0 ⊂ {1, · · · , N}M . We note that our achiev-
ability scheme is different in two key steps: First regarding
the database symmetry, we note that it is not applied over
all databases directly as in [12], but rather it is applied over
groups of databases, such as, group 0 includes databases 1
through n0, group 1 includes databases n0 + 1 through n1,
etc. Second, regarding the exploitation of side information
step, we note that each group of databases exploits side
information differently in the initial round of downloading.
More specifically, we note that group 0 of databases do
not exploit any side information in the initial round of the
download, group 1 exploits 1 side information symbol in the
initial round of the download, group 2 exploits sums of 2 side
information symbols in the initial round of the download, and
so on.

Next, we show that for non-corner points, time-sharing
between corner points is achievable and this concludes the
achievability proof of Theorem 2.

1) Achievability Scheme for the Corner Points: Let
sn ∈ {0, 1, · · · , M −1} denote the number of side information
symbols that are used simultaneously in the initial round of
downloads at the nth database. For a given non-decreasing
sequence3 {ni }M−1

i=0 ⊂ {1, · · · , N}M , let sn = i for all
ni−1 + 1 ≤ n ≤ ni with n−1 = 0 by convention. Denote
S = {i : sn = i for some n ∈ {1, · · · , N}}. We follow the
round and stage definitions in [22]. The kth round is the
download queries that admit a sum of k different messages
(k-sum in [12]). A stage of the kth round is a query block
of the kth round that exhausts all

�M
k

�
combinations of the

k-sum. Denote y�[k] to be the number of stages in round
k downloaded from the nth database, such that n�−1 + 1 ≤
n ≤ n�. The details of the achievable scheme are as follows:

1) Initialization: The user permutes each message indepen-
dently and uniformly using a random interleaver, i.e.,

xm(i) = Wm(πm(i)), i ∈ {1, · · · , L} (63)

3We note that the monotone non-decreasing sequences in the achievability
and the converse proofs serve similar but not exactly the same roles. In the
achievability proof, the index ni corresponds to the index of the last database
that exploits a sum of i symbols in the initial round of download. For the
converse proof, the index ni corresponds to the number of databases that
apply the symmetric PIR scheme if the number of messages is reduced to
M − i +1 messages. We use the same notation in both proofs because in both
cases we minimize over the non-decreasing sequence to get the lower/upper
bound and also to simplify the proof of the capacity for the cases of M = 2,
M = 3. As an example, please see footnote 4.
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where xm(i) is the i th symbol of the permuted Wm ,
πm(·) is a random interleaver for the mth message that
is chosen independently, uniformly, and privately at the
user’s side. From the nth database where 1 ≤ n ≤ n0, the
user downloads

�
s∈S

�M−2
s−1

�
symbols from the desired

message. The user sets the round index k = 1. I.e.,
the user starts downloading the desired symbols from
y0[1] = �

s∈S
�M−2

s−1

�
different stages.

2) Message symmetry: To satisfy the privacy constraint,
for each stage initiated in the previous step, the user
completes the stage by downloading the remaining

�M−1
k

�
k-sum combinations that do not include the desired
symbols, in particular, if k = 1, the user downloads�

s∈S
�M−2

s−1

�
individual symbols from each undesired

message.
3) Database symmetry: Due to the asymmetric traffic con-

straints, the original database symmetry step in [12]
cannot be applied directly to our problem. Instead, we
divide the databases into groups. Group � ∈ S corre-
sponds to databases n�−1 + 1 to n�. Database symmetry
is applied within each group only. Consequently, the user
repeats step 2 over each group of databases, in particular,
if k = 1, the user downloads

�
s∈S

�M−2
s−1

�
individual

symbols from each message from the first n0 databases
(group 1).

4) Exploitation of side information: This step is also dif-
ferent from [12] because of the asymmetric traffic
constraints. In order to create different lengths of the
answer strings, the initial exploitation of side informa-
tion is group-dependent as well. More specifically, the
undesired symbols downloaded within the kth round (the
k-sums that do not include the desired message) are used
as side information in the (k + 1)th round. This exploita-
tion of side information is performed by downloading
(k + 1)-sum consisting of 1 desired symbol and a k-sum
of undesired symbols only that were generated in the kth
round. However, the main difference from [12] is that for
the nth database, if sn > k, then this database does not
exploit the side information generated in the kth round.
Thus, the nth database belonging to the �th group exploits
the side information generated in the kth round from all
databases except itself if sn ≤ k. Moreover, for sn = k,
extra side information can be used in the nth database.
This is because the user can form n0

�
s∈S\{sn}

�M−2
s−1

�
extra stages of side information by constructing k-sums
of the undesired symbols in round 1 from the databases
in group 0.

5) Repeat steps 2, 3, 4 after setting k = k + 1 until k = M .
6) Shuffling the order of the queries: By shuffling the order

of the queries uniformly, all possible queries can be
made equally likely regardless of the message index. This
guarantees the privacy.

2) Achievability Scheme for Non-Corner Points: In this
section, we show that achievability schemes for non-corner
points can be derived by time-sharing between the nearest
corner points, i.e., the achievable scheme under τ constraints
is performed by time-sharing between the corner points of an

N-dimensional polytope that enclose the traffic vector τ .
The following lemma formalizes the time-sharing argu-
ment. Lemma 3 can be thought of as an adaptation
of [16, Theorem 4] and [27, Lemma 1] to the PIR problem
under asymmetric traffic constraints.

Lemma 3 (Time-sharing) For the PIR problem under asym-
metric traffic constraints τ , let the retrieval rate R(τi ) be
achievable for the traffic ratio vector τi for all i ∈ {1, · · · , N}.
Moreover, assume that τ = �N

i=1 αiτi for some {αi }N
i=1 such

that αi ≥ 0, for all i , and
�N

i=1 αi = 1. Then, the following
retrieval rate R(τ ) is achievable,

R(τ ) =
N


i=1

αi R(τi ) (64)

Proof: Let PIRi denote the PIR scheme that achieves retrieval
rate R(τi ) for a traffic ratio vector τi . Denote the total
download of PIRi by Di and the corresponding message length
by Li .

Now, construct the following PIR scheme with total down-
load D and message length L. For each database, concatenate
the queries from the N PIR schemes with ensuring that
each symbol is queried by one PIR scheme only. Hence,
D = �N

i=1 Di , such that Di = αi D, for i ∈ {1, · · · , N}, and
the download from the nth database is tn(τ ) = �N

i=1 tn(τi ).
This concatenation of the achievable schemes is feasible under
asymmetric traffic constraints since τ = �N

i=1 αiτi . To see
this, we note that the nth element of the traffic ratio vector τn

is given by

τn = tn(τ )

D

=
�N

i=1 tn(τi )

D

=
�N

i=1 τ
(i)
n Di

D
=

�N
i=1 τ

(i)
n αi D

D
=

N

i=1

αiτ
(i)
n (65)

where τ
(i)
n denotes the nth element in τi . Since these implica-

tions are true for each element in τ , we have τ = �N
i=1 αiτi

as required.
PIRi scheme downloads Li symbols from the desired mes-

sages, such that

Li = R(τi )Di = αi R(τi )D (66)

Hence, the total message length by concatenating all the
achievable schemes together is

L =
N


i=1

Li =
N


i=1

αi R(τi )D (67)

and the corresponding achievable rate is given by

R(τ ) = L

D
=

N

i=1

αi R(τi ) (68)

The reliability constraint follows from the reliability of each
PIR scheme. The privacy constraint is satisfied due to the
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fact that each PIR scheme operates on a different portion
of the messages and these portions are picked uniformly and
independently. Hence, the privacy constraint for the concate-
nated scheme follows from the privacy of each PIR scheme.
A formal treatment of the privacy constraint of concatenated
schemes can be found in [16]. �

Thus, Lemma 3 provides an achievability proof for any
traffic ratio vector τ that is not a corner point. Finally, we
have the following remark regarding this time-sharing lemma.

Remark 11 We note that although the vector
λ = (λ1, · · · , λN ) is in bijection with τ = (τ1, · · · , τN ), the
time-sharing argument in Lemma 3 does not hold for R(λ).
This is due to the fact that R(λ) is a non-linear function of
λ whereas R(τ ) is an affine function of τ .

C. Decodability, Privacy, and Calculation
of the Achievable Rate

In this section, we prove the decodability, privacy and
the achievable rate in Theorem 2. We note that it suffices
to consider the corner points only, as Lemma 3 settles the
decodability, privacy and achievable rate for non-corner points
based on the existence of feasible PIR schemes that achieve
the corner points.

a) Decodability: By construction, in the (k + 1)th round
at the nth database, the user exploits the side information
generated in the kth round in the remaining active databases
by adding 1 symbol of the desired message with (k − 1)-sum
of undesired messages which was downloaded previously in
the kth round. Moreover, for the nth database belonging to
the �th group at the (� + 1)th round, the user adds every �
symbols of the undesired symbols downloaded from group 0 to
make one side information symbol. Since the user downloads�

�∈S
�M−2

�−1

�
symbols from every database in the first n0

databases (group 0), the user can exploit such side information
to initiate n0

�
�∈S\{�}

�M−2
�−1

�
stages in the (� + 1)th round

from every database in group �. Since all side information
symbols used in the (k + 1)th round are decodable in the
kth round or from round 1, the user cancels out these side
information symbols and is left with symbols from the desired
message.

b) Privacy: For every stage of the kth round initiated
in the exploitation of the side information step, the user
completes the stage by including all the remaining

�M−1
k−1

�
undesired symbols. This implies that all

�M
k

�
combinations of

the k-sum are included at each round. Thus, the structure of
the queries is the same for any desired message. The privacy
constraint in (7) is satisfied by the random and independent
permutation of each message and the random shuffling of the
order of the queries. This ensures that all queries are equally
likely independent of the desired message index.

c) Calculation of the Achievable Rate: For a corner
point characterized by the non-decreasing sequence {ni }M−1

i=0 ,
as mentioned before, we denote y�[k] to be the number
of stages that admit k-sums downloaded from any data-
base belonging to the �th group, i.e., the nth database such
that n�−1 + 1 ≤ n ≤ n�. By construction, we observe that

all databases belonging to the �th group are inactive until
the (� + 1)th round as the user initiates download in such
databases by exploiting � bits of side information simulta-
neously by definition of the group. Consequently, we have
the initial condition y�[k] = 0 for k ≤ �. Since the user
downloads

�
s∈S

�M−2
s−1

�
individual symbols (i.e., from round

1) from group 0, we have the following initial condition
y0[1] = �

s∈S
�M−2

s−1

�
.

Now, we note from the side information exploitation step
that the user initiates new stages in the kth round from the nth
database depending on the number of stages of the (k − 1)th
round for group 0 and group 1 (i.e., for 1 ≤ n ≤ n1). More
specifically, for the nth database belonging to group 0, the
user considers all the undesired symbols downloaded from all
databases (except the nth database) in the (k − 1)th round as
side information. Since database symmetry applies over each
group, and from the fact that each stage in the (k −1)th round
initiates a stage in the kth round, we have

y0[k] = (n0 − 1)y0[k − 1] +



�∈S\{0}
(n� − n�−1)y�[k − 1]

(69)

where the left side is the total number of stages in the (k−1)th
round from all the N − 1 databases (i.e., except for the nth
database that belongs to group 0). The same argument holds
for group 1 as well, hence

y1[k] = (n1 − n0 − 1)y1[k − 1] +



�∈S\{1}
(n� − n�−1)y�[k − 1]

(70)

where (n1 −n0 −1) denotes the number of databases in group
1 other than the nth database.

For a database belonging to the �th group such that
� ≥ 2, the user can generate extra stages by exploiting
the symbols downloaded in round 1. To initiate one stage
in the (� + 1)th round, the user needs to combine symbols

from (M−1
� )�

M−1 = �M−2
�−1

�
stages. Therefore, the number of stages

initiated in the (� + 1)th round as a consequence of the side
information in round 1 is ξ� = y0[1]

(M−2
�−1 )

= �
s∈S\{�}

�M−2
s−1

�
.

Since these extra side information can be used once (at the
(� + 1)th round only) and after that for the kth round, the
database exploits the side information generated in the (k−1)th
round only. We represent this one-time exploitation of side
information in the (� + 1)th round by the Kronecker delta
function δ[k − � − 1]. Consequently, the number of stages for
the �th group, � ≥ 2 is related via the following difference
equation:

y�[k] = n0ξ�δ[k−�−1] + (n�−n�−1−1)y�[k − 1]
+



j∈S\{�}

(n j −n j−1)y j [k−1] (71)

Now, we are ready to characterize τ (n) and R(τ (n))
in terms of y�[k], where � ∈ S and k = 1, · · · , M .
For any stage in the kth round, the user downloads

�M−1
k−1

�
desired symbols from a total of

�M
k

�
downloads. There-

fore, from a database belonging to the �th group, the user
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downloads
�M

k=1

�M−1
k−1

�
y�[k] desired symbols from a total of�M

k=1

�M
k

�
y�[k]. The number of databases belonging to the �th

group is given by n� − n�−1. Therefore, the total download is
given by,

N

n=1

tn(τ (n)) =


�∈S

M

k=1

�
M

k

�
y�[k](n� − n�−1) (72)

Thus, the traffic ratio of the nth database belonging to
the �th group (i.e., n�−1 + 1 ≤ n ≤ n�) corresponding to
n = {ni }M−1

i=0 is given by

τn(n) = τ̃� =
�M

k=1

�M
k

�
y�[k]�

�∈S
�M

k=1

�M
k

�
y�[k](n� − n�−1)

(73)

where n�−1 + 1 ≤ n ≤ n�. Furthermore, the total desired
symbols from all databases is given by

L(τ (n)) =


�∈S

M

k=1

�
M − 1

k − 1

�
y�[k](n� − n�−1) (74)

which further leads to the following achievable rate

R(τ (n)) =
�

�∈S
�M

k=1

�M−1
k−1

�
y�[k](n� − n�−1)�

�∈S
�M

k=1

�M
k

�
y�[k](n� − n�−1)

(75)

VI. OPTIMALITY OF M = 2 AND M = 3 CASES

In this section, we prove Corollary 2, i.e., we prove that
the capacity of the PIR problem under asymmetric traffic
constraints C(τ ) for M = 2, 3 is given by (22). We note that
since the upper bound in Theorem 1 is affine in τ and time-
sharing rates are achievable from Lemma 3, it suffices to prove
the optimality of all corner points to settle the PIR capacity
C(τ ) for M = 2, 3. In the following, we use Theorem 1 and
Theorem 2 to show the optimality of these corner points.

A. M = 2 Messages

We start the proof from the achievability side. From
Theorem 2, the corner points are specified by the non-
decreasing sequence n = (n0, n1). In this case, the system
of difference equations in (16) is reduced to

y0[k] = (n0 − 1)y0[k − 1] (76)

y1[k] = n0 y0[k − 1] (77)

for k = 1, 2, where y0[1] = 1, and y1[1] = 0. Hence,
y0[2] = n0 − 1, and y1[2] = n0. Hence, the total downloads
for the corner point n = (n0, n1) is

N

n=1

tn(τ (n)) =
1


�=0

2

k=1

�
2

k

�
y�[k](n� − n�−1)

= n0(n1 + 1) (78)

Thus, from Theorem 2, the traffic-ratio vector τ (n) is given
by

τ̃0 =
�2

1

�
y0[1] + �2

2

�
y0[2]�N

n=1 tn(τ (n))
= n0 + 1

n0(n1 + 1)
(79)

τ̃1 =
�2

1

�
y1[1] + �2

2

�
y1[2]�N

n=1 tn(τ (n))
= 1

n1 + 1
(80)

where τn = τ̃0, for 1 ≤ n ≤ n0, and τn = τ̃1, for n0 + 1 ≤
n ≤ n1, and τn = 0 otherwise. For the desired symbols, the
user downloads L0(τ (n)) symbols from the nth database when
1 ≤ n ≤ n0, and L1(τ (n)) symbols from the nth database
when n0 + 1 ≤ n ≤ n1

L0(τ (n)) = y0[1] + y0[2] = n0 (81)

L1(τ (n)) = y1[1] + y1[2] = n0 (82)

Consequently, L = n0 L0 + (n1 − n0)L1 = n0n1, and the
achievable retrieval rate R(τ (n)) is given by

R(τ (n)) = L(τ (n))�N
n=1 tn(τ (n))

= n1

n1 + 1
(83)

For the converse, we evaluate the bound in (10) (without
the minimization) for n1 = n0, i.e., we substitute with n0 in
the argument of the upper bound. Then, we have the following
upper bound

R(τ (n)) ≤ 1 +
�N

n=n0+1 τn

n0

1 + 1
n0

(84)

= 1 + (n1−n0)τ̃1
n0

1 + 1
n0

(85)

= n1

n1 + 1
(86)

This concludes the optimality of our achievable scheme for
M = 2.

B. M = 3 Messages

Similarly, for the corner point specified by the non-
decreasing sequence n = (n0, n1, n2), we have the following
system of difference equations for k = 1, 2, 3

y0[k] = (n0 − 1)y0[k − 1] + (n1 − n0)y1[k − 1]
+ (n2 − n1)y2[k − 1] (87)

y1[k] = n0 y0[k − 1] + (n1 − n0 − 1)y1[k − 1]
+ (n2 − n1)y2[k − 1] (88)

y2[k] = n0δ[k − 3] + n0 y0[k − 1] + (n1 − n0)y1[k − 1]
+ (n2 − n1 − 1)y2[k − 1] (89)

with the initial conditions y0[1] = 1, y1[1] = 0, and
y2[1] = y2[2] = 0. Evaluating y�[k], for � = 0, 1, 2, and
k = 1, 2, 3 recursively leads to y0[2] = n0 − 1, y1[2] = n0,
y0[3] = n1n0−2n0+1, y1[3] = n1n0−2n0, and y2[3] = n1n0.
This leads to the following total download

N

n=1

tn(τ (n)) =
2


�=0

3

k=1

�
3

k

�
y�[k](n� − n�−1)

= n0(n1n2 + n1 + 1) (90)

The sequence n = (n0, n1, n2) specifies the traffic ratio vector
τ (n) such that

τ̃0 = n0n1 + n0 + 1

n0(n2n1 + n1 + 1)
(91)

τ̃1 = n1 + 1

n2n1 + n1 + 1
(92)

τ̃2 = n1

n2n1 + n1 + 1
(93)
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where τn = τ̃0 for 1 ≤ n ≤ n0, τn = τ̃1 for n0 + 1 ≤ n ≤ n1,
τ = τ̃2 for n1 + 1 ≤ n ≤ n2, and τn = 0 otherwise.

For the desired symbols, the user downloads L0(τ (n))
symbols from the nth database if 1 ≤ n ≤ n0, L1(τ (n))
symbols if n0 + 1 ≤ n ≤ n1, and L2(τ (n)) symbols if
n1 + 1 ≤ n ≤ n2, hence

L�(τ (n)) =
3


k=1

�
2

k − 1

�
y�[k] = n0n1, � = 0, 1, 2 (94)

Consequently, the following rate is achievable

R(τ (n)) = n1n2

n1n2 + n1 + 1
(95)

For the converse, pick (n1, n2) in the converse bound to be
(n0, n1), which leads to the following bound

R(τ (n)) ≤ 1 +
�N

n=n0+1 τn

n0
+

�N
n=n1+1 τn

n0n1

1 + 1
n0

+ 1
n0n1

(96)

= 1 + (n1−n0)τ̃1
n0

+ (n2−n1)τ̃2
n0

+ (n2−n1)τ̃2
n0n1

1 + 1
n0

+ 1
n0n1

(97)

= n1n2

n1n2 + n1 + 1
(98)

This concludes the optimality of our achievable scheme for
M = 3.

Remark 12 We note that, surprisingly, for the corner points
of the cases M = 2 and M = 3, the number of desired symbols
downloaded from each active database is the same irrespective
to the traffic ratio of the database; see (81)-(82) for M = 2 and
(94) for M = 3. This suggests that at these corner points, the
optimal scheme performs combinatorial water-filling for the
undesired symbols first, i.e., the nth active database downloads
tn − n0 undesired symbols for M = 2 and tn − n0n1 undesired
symbols for M = 3, and then downloads the same number of
desired symbols from all active databases.

VII. ACHIEVABLE TRADEOFF FOR N = 2
AND ARBITRARY M

For the special case of N = 2, and an arbitrary M ,
the retrieval rate calculation in Theorem 2 is significantly
simplified. Let s2 ∈ {0, · · · , M − 1} be the number of side
information symbols that are used simultaneously in the initial
round of download at the second database. Note that there is
a bijection between s2 and the non-decreasing sequence n as
n0 = n1 = · · · = ns2−1 = 1, and ns2 = 2 for any corner point
other than the corner point corresponding to the trivial scheme
of downloading the contents of the first database.

The user starts with downloading
�M−2

s2−1

�
stages of individual

symbols (i.e., the user downloads M
�M−2

s2−1

�
symbols in round

1 from all messages) from the first database to create 1 stage
in the (s2 + 1)th round. After the initial exploitation of side
information, the two databases exchange side information.
More specifically, from database 1 in the (s2 + 2k)th round,
where k = 1, · · · ,

�
M−s2

2

�
, the user exploits the side infor-

mation generated in database 2 in the (s2 +2k −1)th round to

download
� M−1

s2+2k−1

�
desired symbols (by adding one symbol

of the desired symbols to the (s2 + 2k − 1)-sum of undesired
symbols generated in database 2) from total download in the
(s2 + 2k)th round of

� M
s2+2k

�
. Similarly from database 2, in

the (s2 + 2k + 1)th round, where k = 0, · · · ,
�

M−s2−1
2

�
, the

user exploits the side information generated in database 1 in
the (s2 + 2k)th round, and downloads

� M−1
s2+2k

�
desired symbols

from total of
� M

s2+2k+1

�
downloads in the (s2 +2k +1)th round.

Consequently, we have

t1(s2) = M

�
M − 2

s2 − 1

�
+

�
M−s2

2

�

k=1

�
M

s2 + 2k

�
(99)

t2(s2) =

�
M−s2−1

2

�

k=0

�
M

s2 + 2k + 1

�
(100)

which further leads to the following total download

t1(s2)+t2(s2)= M

�
M − 2

s2 − 1

�
+

M−s2−1

k=0

�
M

s2 + k + 1

�
(101)

Thus, the traffic ratio τ2(s2) is given by

τ2(s2) = t2(s2)

t1(s2) + t2(s2)

=
��

M−s2−1
2

�
k=0

� M
s2+2k+1

�
M

�M−2
s2−1

� + �M−s2−1
k=0

� M
s2+k+1

� (102)

The total number of desired symbols is given by

L(s2) =
�

M − 2

s2 − 1

�
+

�
M−s2

2

�

k=1

�
M − 1

s2 + 2k − 1

�

+

�
M−s2−1

2

�

k=0

�
M − 1

s2 + 2k

�
(103)

=
�

M − 2

s2 − 1

�
+

M−s2−1

k=0

�
M − 1

s2 + k

�
(104)

Thus, the following rate is achievable for N = 2 and
arbitrary M

R(s2) = L(s2)

t1(s2) + t2(s2)

=
�M−2

s2−1

� + �M−s2−1
k=0

�M−1
s2+k

�
M

�M−2
s2−1

� + �M−s2−1
k=0

� M
s2+k+1

� (105)

VIII. FURTHER EXAMPLES

In this section, we present further examples to clarify
the achievable scheme for some additional tractable values
of M , N .



7642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 11, NOVEMBER 2019

TABLE VI

THE QUERY TABLE FOR M = 4, N = 2, s2 = 1
(CORRESPONDING TO τ2 = 7

15 )

A. M = 4 Messages, N = 2 Databases

In this example, we show that the achievable rate R(τ2)
does not match the upper bound C̄(τ2) for all traffic ratios τ2.
For M = 4, we have M + 1 = 5 corner points, corresponding
to s2 = {0, 1, 2, 3} and another corner point corresponding to
the trivial scheme of downloading the contents of database
1. Let ai , bi , ci , di denote the randomly permuted symbols
of messages W1, W2, W3, W4, respectively. Then, R(0) = 1

4
by trivially downloading a1, b1, c1, d1 from database 1. In

addition, R( 1
2 ) = 1− 1

2

1−( 1
2 )4 = 8

15 using the symmetric scheme in

[12].
1) Corner Point s2 = 1: (See the query table in Table VI.)

The user uses 1 bit of side information in database 2, hence
the user starts downloading from round 2 (that admits 2-sums).
The user exploits the side information generated in round 1 by
downloading a2 +b1, a3 +c1, and a4 +d1. The user completes
the stage by downloading undesired symbols consisting of
2-sums that do not include ai , hence the user downloads
b2 + c2, b3 +d2, c3 +d3. The undesired symbols are exploited
in database 1, thus the user downloads a5+b2+c2, a6+b3+d2,
and a7+c3+d3. The user completes the stage by downloading
b4 + c4 + d4, which can be exploited in database 2 by
downloading a8+b4+c4+d4. In this case, the user downloads
8 symbols from database 1 and 7 symbols from database 2,
hence we have τ2 = 7

15 . Since the user downloads L = 8
desired symbols, the achievable rate R( 7

15 ) = 8
15 .

2) Corner Point s2 = 2: (See the query table in Table VII.)
The user downloads

�M−2
s2−1

� = 2 stages of individual symbols
(1-sum) from database 1, so that the user forms 2-sums that
can be used in database 2 as side information to start round 3
directly, i.e., by forming 2-sums as side information from the
individual symbols, the user effectively skips round 2. More
specifically, the user downloads a3 + b1 + c1, a4 + b2 + d1,
a5 + c2 + d2 from database 2 taking into considerations that
all these undesired symbols are decodable from database 1.
The user completes the stage by downloading b3 + c3 + d3
that can be further exploited in database 1 by downloading
a6 + b3 + c3 + d3. In this case, the user downloads 9 symbols

TABLE VII

THE QUERY TABLE FOR M = 4, N = 2, s2 = 2
(CORRESPONDING TO τ2 = 4

13 )

TABLE VIII

THE QUERY TABLE FOR M = 4, N = 2, s2 = 3
(CORRESPONDING TO τ2 = 1

5 ).

from database 1 and 4 symbols from database 2, therefore
τ2 = 4

13 . The user downloads L = 6 desired symbols, thus,
R( 4

13 ) = 6
13 .

3) Corner Point s2 = 3: (See the query table in Table VIII.)
In this case, the user skips rounds 2, 3 and jumps directly
to round 4 at database 2. Therefore, the user downloads
a2 + b1 + c1 + d1 from database 2, which uses b1 + c1 + d1 as
side information which is decodable from database 1. Thus,
we have τ2 = 1

5 , and the corresponding rate R( 1
5 ) = 2

5 .
4) Comparison with the Upper Bound: The upper bound in

Theorem 1 can be explicitly expressed as:

R(τ2) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4 + 3τ2

4 , 0 ≤ τ2 ≤ 1
5

2
7 + 4τ2

7 , 1
5 ≤ τ2 ≤ 3

8
4
11 + 4τ2

11 , 3
8 ≤ τ2 ≤ 7

15
8

15 , 7
15 ≤ τ2 ≤ 1

2

(106)

We observe that for all the corner points of the achievable
scheme, the upper and lower bounds match. However, the
upper bound has an extra corner point ( 3

8 , 1
2 ) which is not

achievable using time-sharing. This is illustrated in Fig. 6

B. M = 3 Messages, N = 3 Databases

In this example, we show the capacity-achieving scheme for
M = 3, N = 3 (the capacity region is illustrated in Fig. 3 as
a function of C(λ2, λ3)). Let ai , bi , ci denote the permuted
symbols of messages W1, W2, W3, respectively. We show here
only the query tables for achieving non-trivial corner points. In
this case, we have

�M+N−1
M

� = 10 corner points corresponding
to non-decreasing sequences (n0, n1, n2).

For the pair (τ2, τ3) = (0, 0), the achievable scheme is the
trivial scheme that downloads a1, b1, c1 from the first database
only achieving R(0, 0) = 1

3 . For the corner point ( 1
4 , 0), this
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Fig. 6. Upper and lower bounds for R(τ2) for M = 4, N = 2.

is exactly the same corner point presented in Section V-A.1
(for λ2 = 1

3 ) as τ3 = 0, which effectively reduces the problem
to N = 2 databases. The achievable scheme for this corner
point is illustrated in Table IV, hence R( 1

4 , 0) = 1
2 . For the

corner point ( 3
7 , 0), again this point reduces to 2 databases. The

achievable scheme is given in Table III, and R( 3
7 , 0) = 4

7 . For
the corner point ( 1

3 , 1
3 ), which is the symmetric-traffic point,

the achievable scheme is the symmetric scheme in [12], which
achieves R( 1

3 , 1
3 ) = 9

13 . For the corner point ( 1
2 , 0), we can

apply the symmetric achievable scheme for N = 2 databases
only as τ3 = 0 in this case, hence R( 1

2 , 0) = 4
7 .

Now, we focus on the non-trivial corner points. As men-
tioned previously, the pair (s2, s3) is in bijection with the
sequence (n0, n1, n2). Therefore, we enumerate the remaining
cases using the pair (s2, s3).

1) Corner Point (s2, s3) = (0, 1): In this case, the user does
not use the side information generated in database 1 within
the initial download of database 2 (s2 = 0), hence the user
downloads new individual symbols from database 2. The user
uses 1 bit of side information in database 3 in its round of
download (round 2). These side information symbols come
from database 1 and database 2. The query table for this case
is shown in Table IX. In this case, we have (τ2, τ3) = ( 9

26 , 4
13 ),

and the achievable rate is R( 9
26 , 4

13 ) = 9
13 .

2) Corner Point (s2, s3) = (0, 2): The user does not exploit
the side information generated from database 1 in the first
round of download at database 2. The user uses 2 side
information symbols simultaneously in the initial round (round
3) of download at database 3. Note that in round 3 database
3 receives side information from rounds 1 and 2 of databases
1 and 2. The query table for this case is shown in Table X. In
this case, we have (τ2, τ3) = ( 7

18 , 2
9 ), and the achievable rate

is R( 7
18 , 2

9 ) = 2
3 .

3) Corner Point (s2, s3) = (1, 1): In this case, both data-
bases 2 and 3 exploit the side information generated from
database 1 in their initial round of download (round 1).

TABLE IX

THE QUERY TABLE FOR M = 3, N = 3, (s2, s3) = (0, 1)

(I.E., (τ2, τ3) = ( 9
26 , 4

13 )).

TABLE X

THE QUERY TABLE FOR M = 3, N = 3, (s2, s3) = (0, 2)

(I.E., (τ2, τ3) = ( 7
18 , 2

9 ))

The query table for this case is shown in Table XI. In this
case, we have (τ2, τ3) = ( 4

13 , 4
13 ), and the achievable rate is

R( 4
13 , 4

13 ) = 9
13 .

4) Corner Point (s2, s3) = (1, 2): In this case4, database
2 exploits 1 side information in its initial download (round
2), while database 3 skips to round 3 directly. Database 3
receives side information from the round 1 of database 1 and
round 2 of database 2. The query table for this case is shown
in Table XII. In this case, we have (τ2, τ3) = ( 1

3 , 2
9 ), and the

achievable rate is R( 1
3 , 2

9 ) = 2
3 .

5) Corner Point (s2, s3) = (2, 2): Both databases 2 and
3 skip round 1 and 2 of downloads and go directly to
round 3, in which they exploits 2 side information symbols
simultaneously. The query table for this case is shown in

4We use this case to clarify the differences between the non-decreasing
sequences in the achievability and the converse proofs. In this case n =
(1, 2, 3). From he achievability point of view, this means that database 1
(n0 = 1) is the last database that does not use side information from other
databases, database 2 (n1 = 2) is the last database that uses 1 side information
symbol, and database 3 (n2 = 3) is the last database that uses a 2-sum of side
information symbols in the first round of download. From the converse point
of view, if we condition on one message (say W3), then the user downloads
(a1, b1, a4+b2) from database 1, (a3, b2, a2+b1) from database 2, and (a5+
b1, a6+b2) from database 3. That means that there are (n1 = 2) databases that
use the symmetric scheme of [12] when the number of messages is reduced
to two. If we further condition on W1, the user downloads (a1, a4) from
database 1, (a3, a2) from database 2, and (a5, a6) from database 3, which
means that there are (n2 = 3) databases that apply the optimal symmetric
scheme if the number of messages is decreased to one.
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TABLE XI

THE QUERY TABLE FOR M = 3, N = 3, (s2, s3) = (1, 1)

(I.E., (τ2, τ3) = ( 4
13 , 4

13 ))

TABLE XII

THE QUERY TABLE FOR M = 3, N = 3, (s2, s3) = (1, 2)

(I.E., (τ2, τ3) = ( 1
3 , 2

9 ))

TABLE XIII

THE QUERY TABLE FOR M = 3, N = 3, (s2, s3) = (2, 2)

(I.E., (τ2, τ3) = ( 1
5 , 1

5 ))

Table XIII. In this case, we have (τ2, τ3) = ( 1
5 , 1

5 ), and the
achievable rate is R( 1

5 , 1
5 ) = 3

5 .

IX. CONCLUSION

In this paper, we introduced the PIR problem under asym-
metric traffic constraints τ . We investigated the fundamental
limits of this problem by developing the novel upper bound
C̄(τ ). The upper bound generalizes the converse proof in [12],
which inherently utilizes database symmetry. The upper bound
is a piece-wise affine function in τ . The upper bound implies a
strict capacity loss due to the asymmetric traffic constraints for
certain cases. We developed explicit achievable schemes for�M+N−1

M

�
corner points, and achieved the remaining points by

time-sharing. We described the achievable scheme by means
of a system of difference equations. We explicitly derived the
achievable rate for N = 2 and arbitrary M . We proved that
the upper bound and the lower bound exactly match for every
τ for the cases of M = 2 and M = 3 for any N .

It is worth noting that for general M , which is not equal
to 2, 3, the problem is open from both sides (achievability
and converse). However, focusing on the achievability side,
one can think about different round skipping techniques other
than just skipping the first rounds. It is unclear how to exploit
side information in this case though. We see the problem of

closing the gap for general M in our setting as a central
problem as it relates to the cache-aided PIR problems [30],
[36], PIR from wiretap channel II [37], and noisy PIR [38].
Consequently, closing the gap in our problem solves the other
problems almost directly.
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